UNCLASSIFIE

0 263 755

Repraduced
by the

I A, S e

ARMED SERVICES TECIINICAL INFORMATION AGENCY
ARLINGTON HALL STATION
ARLINGTON 12, VIRGINIA

UNCLASSIFIED



NOTICE: When govermment or other drawings, speci-
fications or other data are used for any purp.se
other than in connection with a definitely related
government procurement operation, the U. S.
Government thereby incurs no responsibility, nor any
obligation whatsoever; and the fact that the Govern-
ment may have formulated, furnished, or in any way
supplied the sald drawings, specifications, or other
data 1is not to be regarded by implication or other-
wise as in any manner licensing the holder or any
other person or corporation, or conveylng any rights
or permission to manufacture, use or sell any
patented invention that may in any way be related
thereto.



X

L

i
N

0 gy ASTIA
"S AD o, 2637

RO

cem

L]

it

Gr-4-5
XEROX

TECHNICAL REPORT #6

Office of Naval Research
Contract Nonr-2121(22)

MAGNETO~ACOUSTIC EFFECTS IN TILTED MAGNETIC FIELDg+

Harold N. Spector*

A
i

};ué P

g,

Institute for the Study of Metals
and
Department of Physics

University of Chicago
Chicago, Illinoils

June 1961

+ Submitted in partial satisfaction of the requlrements
for the Ph.D. in Physics, University of Chicago

*Shell 01l Company Predoctoral Fellow, 1960-61

Reproduction in whole or in part 1is permitted for
any purpose of the United States Government



Magneto-Acoustic Effects in Tilted Magnetilc Flelds*t

Harcld N. Spector*x

Institute for the Study of Metals
and
Department of Physics
Unlversity of Chicago
Chicagn, Illinols

Abstract

We have shown that the entire Fermi surface can be mapped
by uslng geometic resonances in the sound attenuation in tilted
magnetlc fields and the drift velocity of the carrilers along the
magnetic field simultaneously determined. The general features
of the phenomena considered do not prove dependent on the
particular models used 1in our calculations.

In addition to the results specifically pertalning to
tilted fields, we have found that when the assumptions of equal
effective masses and relaxatlion times are dropped for a two band
model of a semi-metal, the contribution of the two types cof
carrlers to the ultrasonic absorption is additive. On examining
the contrlbution to the absorption for a model of majorlty and
minority carriers, we have found, also, that the mlnority
carriers dominate the attenuation when they are in the region

of geometric resonances.

* Submitted in partial satisfaction of the requirements for the
degree of Ph.D. in Physics, University of Chicago.

+ Supported in part by the National Science Foundation, and the
the Offlce of Naval Research.
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I. Intrcductlon

In the past few years, experiments have been performed on magneto-

acoustic absorption in metals and seml-metals at low temperatures.l'7

Several interesting phenomena have been observed whlch prove useful in
determining the electronic structure of metals. 1In a transverse magnetic

- — - —~ P
field, there are osci

latlons in the ultrasonic attenuation with magnetic

1—.!

field. These osclllations occur when the cyclotron diameter of an
extremal orbit 1s equal to an integral number cf wave lengths. Also, in
the high field 1limit, when the magnetic field is tilted from a direction |
perpendicular to the direction of propagation of the sound wavé, there 1s

12 This increase occurs when the carriers

an increase in the attenuation.
dpifting along the fleld with the maximum veloclty remain in exact phase
with the sound wave. The extremal dimensions of the Ferml surface can be
obtained from the periods of the magneto-acoustic oscillations while the
Fermi veloclty can be determined from the critical angle of tilt at which
the increase in attenuation begins.

The possibility of combining the tilt effect and the geometric
resonance experiments to obtain informatlon about the dimensions of non-
extremal orblts on the Fermi surface now presents 1tself.13 Through such
an experiment, the whole Ferml surface cculd be mapped out.

In Section II we derive the expressions for the conductlvity tensor
that are appropriate in the region of geometric resonances for tilted
fields. In Section III we treat the calculation of the ultrasonlc attenu-
ation for the case of the free electron gas 1n a uniform posltive back-

ground discussed by Cohen,'Harrison, and Harrison8 as a model for a metal.

In Section IV we do the same type of calculation for a two spherical band




model of a semi-metal discussed by Harrison.lu

We also examine the
effect of relaxing hls assumptions of equal effective masses and relax-
atlon times for the two kinds of carrilers, Section V is devoted to cal-
culating the acoustle attenuatlon for a model of majority and minority
carriers with a positive background. A discussion of the verious phenome-

na which we have investigated thecretically and of their physical signl-

ficance 1is gilven 1n Section VI.

II. Derivatlon of the Conductlvity Tensor

Previous theoretical work has 1lndicated that the geometric resonance8

and the tilt ef‘fectl2 arise from the dependence of the components of the

conductlvity tensor on the magnetic field strength and the angle of tilt.
We therefore begln by evaluating the components of the conductivity tensor
In the regilon of geometric resonance for arbitrary angle between the dl-
rection of propagation and the magnetic field. The general expressions
for the conductlvity tensor in the presence of a magnetic fleld derived by
8

Cohen, Harrison, and Harrison using a model of a free electron gas are
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In the abovelB, the magnetlc field is in the z direction, and the y
direction is perpendicular to both the magnetic fleld and the dlrection

of propagation of the sound wave. The angle between the magnetic fleld
3 Ve
) e
1s the sound wave number times the cyclotron radius ( R = &i) and o

and the direction of propagation is '%__ . The quantity X

is the sound frequency.

3 In the reglun of geometric resonance X 1s of order but greater than
w.T R

————
: (- wT
i terms in the summation. The condition X siny € [ also must be satis-

unity, and if in addition >> | we need only keep the n=0

fied so that our results do not hold in the limlt V- g' . However we
ol
are mainly Iinterested in angles of tilt Jjust beyond Vo = Sin J‘/v;

where V. 1s the sound veloclty and V.~ the Ferml velocity so this con-
dition imposes no hardship. The components of the conductlivity tensor

0 now reduce to

I+ (nwet -“wx + ils-hvcasej

-+ :
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where 9o (Xcos v) is an oscillatory function of X previously def‘ined.8
We are now interested in evaluating integrals of the type that appear,
e.z., in G;Z . When w¥ > | , the demoninator inslde the integral is a
rapidly varying function of § which gives rise to a resonance when we have

v Vs
values of O that satisfy cos & =  53-. when sihv 2 A

HE R ))
When the angle of tilt is less than the critical angle gilven by sin V;".L/V,
we can nc longer have a resonance effect in the denominator since the
cosline carnot be greater than one. When X is not tco large, the Bessel

functilion 1s a slowly varying function of 15} compared to the resonance

denominator, and it can be taken out of the integral and evaluated at the

- B
angle 7= cos ;_r_v.‘_. The integration ¢f the remalindsr of Lhne integrand
s Sinhy 16

can then be easlly performed to yileld the following result for O;}

A - 2

-2 ‘o .
Gip = U9 T (Reasvsing?t) [N-cMT] (11.3)
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Numerical values of the functions N and M are given in Tsble I for
various valuesg of w7 and V¥

For our further use, 1t proves necessary to calculate explicitly
the Oﬁ' compenent of the conductivity tensor, where we now transform to
a coordinate system in which the 1 direction is the direction of propa-

gation of the sound wave and fthe 2 direction is the same as the pre-

viously defined y direction. It 1is only necessary then to know the O;}

and ;3 components to comput OT\' . We have for @7
‘Lﬁ-{; (\—Lu)‘t) : - @
g = (1\ cosy ) | 3 (‘X“W) * L (Xeos 5{n6»“)[[\j -LM}
(I1.5)

Because of the fact tha! we have diffusion, the effective conductilvity

tensor that plays an important role in ultrasonic attenuation calculations

e “l AN L | < [N
is not J but g = E‘I -Q“] a_g where the tensor R has cc:mpoman*t-sa8
o

S - LW YE J. .
Ry 36, (- cuse) (%) by O (12.6)



The component of the effective conductivity tensor that corresponds to Q)

is

o' %\E)a{&-ga +Tr et et (- B e )]

1l

P il
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The apprcximations that were made in obtailning (II.7) are valid in the

Lo

range Y. £ V £ % when wt»>» | . The physical basis for the approxi-
mations ls that orbits that are drifting along the magnetic fleld wilth ‘
a velocity that has a component in the directlon of propagation equal

to V¢ are exactly 1n phase with the sound wave and therefore dominate
the attenuation when @t »>1 . The critical angle Yy, marks the angle of
tilt at which the carriers drifting along the magnetic fleld with the
maximum velocity (\& V;,) are in phase with the sound wave so that only
for y32 Yy, canWe have orblits that wlll be in exact phase with the sound

‘wave.

III. Free Electron (Qas

Expr=ssions for the attenuation of sound 1n a free electron gas

with a smeared out positive background have been derived in the litera-

ture.8 The attenuation coefflclent or power density dissipated per unit

energy flux 1is

q - MVF gbt '
Wﬁs —l“ | (II1.1)



Y

8

where m 1s the electron mass, M is the atomic mass of the metal repre-
sented by the model, | 1s the mean free path and S‘.,,‘. 1s a dlagonal

component of the tensor given by

g - Re{ (t+B] [ &8 [F+8)] - T

(I11.2)
=Y
The tensor B has only diagonal components B,, = -y, '3aa s 833 =L 3
w a
where ¥ = ‘;Tt and 6 = ¥ (-\-f-s) . Because frequencies even up to
)

the mlcrowave range are small compared to the plasma frequency wp, 4
1s always a small quantity. On the other hand, in the microwave range of
ultrasonic frequencies 6 wlll become of order or greater than unity.
Physlically, for frequencies smaller than the plasma frequency the longil-
tudinal currents must vanish because the electric flelds set up by any
relative charge separation will be very great. However, the electric
flelds set up by the relative transverse currents are weaker by a factor
of (yéi)a' and therefore the screening of the transverse currents breaks
for microwave frequencles.

When screening breaks down ( i.e., 18| » | <l ) for the trans-
verse currents, the longitudinal component of becomes

S = Re "’L", - |
I o

4}
' (III.3)

When there is no break down in screening, the expression for S,; contains
comblnations of the other components of the conductivity tensor. Detalled
calculations have shown, however, that for X > o the other components

of the conductlvity tensor give a negligible contribution and S'” again
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has the form (III.3). This can be seen very clearly in the case when the

magnetic field and dlrection of propagation are perpendlicular to each

8

other from Fig. 3 in Cohen, Harrison, and Harrison. In thils figure, the

field dependent part of §,, is plotted versus X for both @<l and B8>] .

4

The curves for both cases coinclde when X >g . Putting the expression
/
for Q7 1into (III.3) we get

sprr= a0 | EM ezt + [i-gergti] (30N ] |
300+ (wp]

(l—jo'f' I:‘N)a-\- J-o‘-t M& o
(I11.4)

The relative attenuation 3 (Su+!) El"'(w‘)aj/@\)a- is plotted versus
X = ‘iw_\.’f in Flg. 1. The oscillations in the atfenuation are much stronger
than In the case of the purely transverse fleld. There are maxima in
where the square of the Bessel function \To has 1its maxima. Also there
are minima in 5“ where the Bessel function {J, has its zero.>7 The
values of ¥ cosv $ih 6* where S‘\ has 1ts maxima and minima are glven .

in Table II.

IV. Two Spherical Band Model

A two spherical band model of a semi-metal has been studled by
Har'r:Lsonll+ for the calculatlon of ultrasonic attenuation in bismuth. In
calculating the attenuation he made the assumptlion of equal masses and

relaxation times for the holes and the electrons for the sake of simplic<

ity. We have rederived hls expressions, where necessary, without maklng

et < R e R ——
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this assumption. We find that both the total current and the difference
between the electron and hole currents respond to the sums and differences
of the parameters of the two bands. The total current and the difference

between the electron and hole currents aré

Aefhe PLE+ TTR-V)E -(2-4)5 ]
T:=TJe*])w = ' =+ ' & Vn ) -(Ts -‘t.'_n) ¢
JJ [ —— (Tv.1)

PN <
-+ /\. [Tl\?i. (V.,-\-‘O;\) _j'_" . m ]‘

a.le (‘c" Th) 2‘-

T &= 22 (Vo+V)) 2L s
Jesgn = T C 13\(;“wh ‘£(<e+th)£]a (1v.2)

— = A a —v ey v _ 4
*/\'[e»«as'(z\:w’;)“-(a SEL
where | ‘F“e O;Q(‘j-‘:’ -+ O:h ‘_:' is the sum of the electron and

w ,
- ;., .

‘Ifle conductivities and AN = 0—-¢c- O:' is thelr difference

VQ and \/ are the electron and hole deformation potentlial tensors. In
the presence of the sound wave, the energies of the electron and hole

bands become, according fo I-Iar'r:i..son:L7 ‘

iy
Ee-= E: - 'i\;g\***

[ Y -\
e . g -3 Vea (5v.3
o
° )
where Ea and Eh are the energies of the band edges when there 1s no

sound wave. The electric field 1s derivable from the currents by Maxwell's

equations
Y — - ° ° Un¢ :
- _ F— Y F = VAR é-‘;
£ = J 0 e(B) o (IV.4)

<
o o e(%)
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where £ 1is the dielectric constant of the material. The energy dis-

sipated has been previously calculated for the two band modellu and is

Q=% Re U [ { BT (g W T
v

* QeL e \te 1, .
[ Lt (aewn)_aﬁ(%‘-f{)l}"/\ [i‘i‘ <3%¢$)
: - L — 'l +Q .A - \ <
J 3e (“cq_ +z)d % t [ (z:u\:h) 11 2 (-fe-»?‘n)I]
i

In the case where the deformation forces are strong i.e.

\1' Vie e

. > |
amyr Vs

, we obtain for CQ

[P DT TEP S UV~ N
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The restriction to strong deformation forces is easily satisfled in the

14

semi-metals where it has been estimated that the quantity above is

~ 103. For the attenuation of a longitudinally polarized sound wave we

get _
Ta Tn Ref Woer W[ Ry + A [T
Snot DGR (o) '3} °{ per I B+ A O

Mol v Veemven® P CF-T1E R+ (Voo Ve )
LA+ 8, [ B- f‘]fl Ay, + A, CP- 'r""]:" [;,( (1v.8)

All the terms 1in above expression which contaln E| can be neglected when
we are at sound frequencles below the plasma frequencyj then we have
screening, and the longitudinal currents nearly vanish. Therefore as long

as the electron and hole deformation potentlals are not nearly 180° out of
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phase (i.e., VQQ'*-\Lh), only the terms containing the sum of the
deformation potentlals remain. The second term in the expression con-
taining the sum of the deformation potentials has been calculated ex-
plicitly and has been found to be negligible except in the region of
Harrison's high field peak for frequencies of interest (lL.e. in the
frequency region > 10 me for Bi). Therefore, in the regions of geo-
metric resonance and also in the reglon of the high field tillt effect

we have

Su = |+ Tl 1 (V, +V, )&
. ‘%Néﬁﬂ(fo+1ﬂ V} ( ‘*.bh) Re ﬁl

(Iv.9)

and we can see that the contributions to the ultrasonlec absorption from
the two bands are additive. Because of this additivity, the contributions
of each of the bands to geometric resonance and to the tilt effect are
separable. The assumptions of equal effective masses and relaxatlion times
for the two bands are therefore not unduly restrictive in interpreting
results from experimental data.

We now return to the assumptions of equal masses and relaxation times
to calculate S” for the case of geometrlic resonance in tilted magnetic
fields. As we have Just shown, for values of the deformation potential
and the frequency ranges of interest, these assumptions are not re-

strictive. We then have

(Iv.10)
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(su-\)/ﬁ,‘ (\'%‘.%E“) (g} =

14

where rﬂ‘ is the effective mass of the carriers and m 1is the free } i
electron mass. Substituting the expression obtained for a:' (1I.7) into

(IV.10), we obtain for the normalized attenuation . ’

a 3 { EM@ee3TM) + (-9 TN ENTf-ao]j

[wr + TAM] % [-g, + 35017

(Iv.11)

The normalized attenuatlon 1s plotted versus]K_ in Fig. 2. The oscll-
lations of the attenuation witix}(_ are very simlilar to those shown in
Fig. 1 for the model of a free electron gas. The only difference between
the two flgures besides a difference 1n scale occurs in the high fleld
1imit. Therefore we can expect very similar results for both mcdels in
the geometrlc resonance reglon except for the orders of magnitude of

the effect.

V. Majority and Minorlity Carrlers

We now calculate the ultrasonic attenuation for a model of majority
and minorlty carriers with a positive background to represent the posi-
tively charged lons. The model 1s appropriate when we have a small
section of the Ferml surface which has a much smaller Ferml veldcity than
the remainder of the Ferml surface. We assume that we have two spherical
pleces of Fermil surface with Fermi velocltles V&‘ and VF& and numbers
of carriers n,and ng ( N, = :;‘-“9. ( ".‘_;"';)3 ) such that N ang = ha. ’

where N, 1s the number of positive ions smeared out in the background.
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To make the calculatlon simpler we assume that the effective masses and
relaxation times of the two kinds of carriers are equal.
The total current contains a contribution from the positive back-

ground as well as from the two types of carriers

-l

Ta Je" +jae. T reed (v.1)

The electromagnetic field set up by the passage of the sound wave can be
calculated self-consistently from Maxwell's equations. We can write the

relation between the electric field and the total current as

| = —o B £
(v.2)

)
where B 1s the diagonal matrix defined in Section IIT with components

o

, a
8”:-“{, Baa, = 833 = L@ and 0~ = nb_:_h_f . PFrom the solution

of Boltzmann's equations and (V.1) we obtain

-\ - 6‘;, (E - Ma - < >I - Y
W 301 0 = - = - Moy
J t T 394 GcaO; (E e
Y
N T Y
oy r > Teg = Mook
! ™ °a = 2
v\ (V'3)

[

&
where o"" and O"'"are the effective conductivity tensors for the twe kinds

-3
of carriers. The energy dissipated per unit volume 1n the case c¢f the

majority and minorlty carriers is

T
S

T T VI S S g T ST
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Q" ™ (<Y ‘a\)g (V.4)
L

where the first term inslde the brackets 1s the energy transferred from
the sound wave to the two types of carrlers and the last-two terms are
the energy fed back into the sound wave because of the drag exerted by
the two kilnds of carriers on the positlve background. These drag forces
arise because the average carrier veloclty <?¢¢7 before collision
in general differs from that after collision.18 Using (V.l) and (V.2)

to simplify (V.4) we have

Q = ‘%& Re { roed™ (T+B)E {
(v.5).

We can now use (V.l)}, (V.2) and (V.3) to obtain the electric fileld in
-
terms of the sound field W set up by the scund wave

> .|

LD P-4 N B >

§=~[B+Q‘O'"4—"_‘.ﬁo—]. I-0&7.
Ne  ° Ny 2 Ny !

-
Na (‘-5‘—']. mu
W = eT

(v.6)

We can see that the conductivity tensors of the two types of carrliers come
F)
in only in the form %6 aé,' +* Qnﬁ ai ' . In other words, their con-
.Y

tributlon comes in the form of the effective conductivity tensor of a
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group of carriers weighted by the fraction of the total number of carrlers

[ Y
in the group. Thus for the tensor § which 1s directly related to the

absorption we have
- QQ{[‘f\i-l?]'C?-l- S.; +,_'_’_a u,]-lﬁf+§]i-

(v.7)

For the ratio of the Ferml velocitles of the mlinority to the majority

carriers we have assumed P /VF = O.| . Therefore we have %‘ 2 10'3
-]
and -:;-:-" X | . If the minority carriers are in the reglon of geometric
° = 9V
resonance, l.e. X, = = 2 , then the majority carriers are 1in
<

the region between geometric resonance and cyclotron resonance, i.e.
Xa 2 | 0 , and their conductivity tensor 1is not strongly dependent on
magnetic fleld.

To calculate the attenuation of longltudinally polarized waves when
either 6 -‘-‘l or B«<| and X’, >g we can use (III.3) by replacing o !
by T O)"‘ "+ Wo 0‘ . For the majority carriers we get 0,-‘ /s ?_}ﬁ?;& :
by usir?g the limiting form of the expressions (II.1l) for large X. 1

We first treat the case where the magnetic fleld 1s transverse to the
direction of propagation. The conductivity tensor for the minority
carriers is

o~ = -3wr (I wr) [|“§o (X)J

b

;Q
(90) [ St - g, (X.)_] (v.8)

Using these expressicons for the conductlvity tensors of the minority and

ma jority carriers, we get for the attenuation when the minority carriers
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are 1n the region of geometric resonance

Ve L)% g0 (X)) [ 1= 9, ¢X
Sa+l = BV:; (gh)7ge ¢ ( d )J

- N o) 5T
( + ::') [L I =~ 30 Cxo)JQ + (O)t-)a[' ‘I'i;?é.v;] (v.9)

From (V.9) we can see that a small number of carrilers in the geo-
metric resonance reglon dominates the attenuation desplte the presence of
a large number of carriers which do not satisfy the geometrlic resonance
criterion. The expression (V.9) resembles the expression for the attenu-
ation of longltudinal waves 1n a free electron gas mode18 except for the
factor %E? whilch arises from the dlfference 1n the Ferml velocitles
of the two kinds of carriers. Therefore 1f we have small sections of the
Ferml surface on geometric resonance, we wlll be able to observe the
csclllations due to these sections although the remalnder of the Ferml
surface 1s not In the geometrlic resconance region. We can now proceed to
the calculaticn of the attenuatlion for geometrlc resonances in tilted
magnetic flelds. The conductivity component for the majority carriers 1s
agaln Cﬁra’: "Eﬁ%i§& . We can use (II.7) for the appropriate com-
ponent of the conéié%ivity tensor for the minority carriers. The attenu-

atlon then becomes

S, 1=

T Gh)’ [35M Coc + TM) + (-5~ T2N) GV -3.) ]
£

[+ % {["3° AR M)]Q'*- (wre)? (v.10)

Fa

v e
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where we have dropped terms that are of order (2&%)" . The part of

the attenuation that depends upon the magnetic fleld and the angle of

tllt is simllar to that of the two band model developed in Section IV.
Therefore we have the same general type of geometric resonance in tillted
magnetic ,fields as in the case of a semi-metal except for a scale factor. §
In the case of majority and minorlty carriers in tilted filelds, the é
minority carriers dominate the attenuatlon as in the case of the non-tilted |
fleld discusesed earlier in this sectlon. Therefore we can use geometric
resonances 1n tilted flelds the map out small gectlons of the Ferml surfaces
as in the two cases dlscussed previcusly despite the presgence of the re- |
mainder of the Fermi surface. This 1s Important because, for many

materlals, only small portions of the Fermi surface have a Fermi velocity

small enough for the tilt effect to occur at measurably large angles.

VII. Discussion

In cur calculations In Sectlons III, IV, and V we have found geo-
metrlc resonances in tilted magnetlc flelds, the form of which, apart
from field and angular lndependent scale factors, seems to be indepen-
dent of the model used for the calculation. The only qualitative dif-
ference between the models used appears in the high field 1limit. More-
over, the oscillatlons which appear in the case of tilted flelds are much
stronger than those which appear in transverse fields. Mathematlcally,
in the tilted fleld case the oscillations arise from the Bessel functlons
Ig (K LeSy Sin 9‘) which have zeros at certaln values ofX .

In the case of exactly transverse fleld the osclllations arose from the
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less rapidly varying g,(}{) which does not have any zeroes and which 1is
the square of the Bessel function averaged over the whole Ferml surface.
Physicallv, in the tilted fleld case, we have one orblt dominating the
attenuation instead of an average over all orbits which gives a heavy
welght to extremal orbits and which nearly washes out the amplitude of
the osclllations. |

When the magnetic field is tilted from the direction perpendicular
to the direction of propagation, there are no orbits drifting along the
magnetic fleld in exact phase with the sound wave until we reach the
critical angle ¥, , glven by $fh;£ = %§ . At this angle, carriers
drifting along the magnetic fleld, whgch are 2t the tip of the Ferml sur-
face, have a componer:t of drift velocity in the direction of propagation
equal to the veloclty of sound. These carrlers therefore drift in exact
phase with the sound wave, and they dominate the attenuation. As we
increase the angle of t1lt beyond the critical angle, olher orbits drirft
in phase with the sound wave, and they dominate the attenuatlon. By
varying the angle of tilt, we can therefore bring orbits from all over
the Ferml surface into phase with the sound wave and make them dominate
the attenuation. We can then, by varyling the strength of the magnetic
fleld, get gecometric resonances from each orblt that dominates the
attenuation separately.

The condition for a maximum in the osclllations when the magnetic

field 1s tilted at an angle J is

i

d cosvy = h/\ (VI.1)

Ak
where d = EﬁF 3ind is the cyclotron dlameter in real space &nd
e
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&s,'n e"‘ is the dimension of the Ferml surface transverse to both the
magnetic fleld and the directlion of propagation. The situation 1is shown
in Fig. 3. It 1s the proJjection of the cyclotron diameter 1in real space
in the direction of propagation that must be equal to an integral number
of wave lengths. The drift veloclity of the orblt along the magnetic fleld
can also be obtalned since the component of the drift velocity along the
directlon of propagation must be egual to the veloclty of sound for the
orbit to dominate the attenuation. Therefore at an angle of tilty ,

the orbit dominating the attenuatlon has a drift velovcity of

Vs
s\ Y (VI.2)

V. =

The relationshlp between the angle of tllt and the drift veloclty 1is
shown in Fig. 4. Therefore the llnear dimenslons of the Ferml surface and
the drift velocitles can be defermined everywhere iI wi>>| and the
angle of tilt occurs at measurably large angles.

The cendltion ¥ | arises because for an orbit to domlnate
the absorption, 1t must drift in phase with the sound wave for many
perlods before the carriers traversing the orblf are scattered to other
orblts. If this condition is not weli satisfled, then we obtain éom—
parable cr greater contributions from orbits other than the one we are
interested 1in and we are no longer able to determine the dimenslons and
drift veloclty of a single orbit. The requirement that the angle of tillt
occur at measurably large angles arises because the solld angle of the

Ferml surface mapped out 1s a very rapld function of angle of tilt, for
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angles Jjust beyond ¥, . Therefore 1if this requirement 1s not satisfied,
only a small solid angle of the Ferml surfece around its extremal di-
mensions would be mapped out and no new information would be galned. |
The condition W1T>> | would require microwave sound waves and %
I

materlals of ultra-high purlities except perhaps for the semi-metals and

tin, zinc, and « ‘um among others. The requirement that the angle of ;
tilt occur at mea = Wly large angles ls satlsfled 1f there are sections %
of the Fermi surfac th a small Ferml velocity such as occurs 1ln the f

semi-metals and in certain portions of the Ferml surfaces of tin, zinc,
magnesium, gallium, etec.

In materials where the condltions for observing the comblned geo-
metric resonance-tlltc effect phenomena are satlsfled, it should prove a
very important tool 1n determining the electronic band structure. In
materials In which the conditlion wz>>| is only marginally satisfied,
we can still ldentlfy the first few osclllallons with the orbit drifting
in exact phase wlth the scund wave, as the discussion 1n Appendlces A
and B shows. The remaining oscillations would be harder to interpret
experimentally, as 1n the region beyond the first few oscillatlons, orbits
other than the one drifting in phase contrlbute signiflcantly to the
attenuatlon.

Wwe note, 1n passing, that the strong oscllliations observed by Morse

11 orbitlg are more remlniscent of

in the noble metals for the dog's bone
the geometrlc resonances occurring 1ln tllted flelds than of those pre-
dicted by Cohen, Harrison, and Harrison in the free electron model for
transverse fleld. In the case of the "dog's bone orbits, all the orbits

contributing to the attenuation have very nearly the same diameter in
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momentum space. Therefore we would have, as in the case of tilted fields,
one orbit or type of orblt dominating the attenuation instead of an
average over all the orbits. These would result in the oscillations
belng much stronger than predicted by the free electron model. We have

al ready shown in Sectlon V that those orblts on the Ferml surface that
are 1n the geometric resonance region wlll domlnate the attenuation even

in the case of transverse magnetlc flelds.
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Appendix A

The evaluation of the rapidly varylng part of the 1lntegrand dis-
cussed 1n Sectlon II and the wvalldity of the approximatlions made 1n
treating 1t as rapidly varying compared to the Bessel function warrant
further discussion. The remainder of the integrand, after the slowly

varyilng part has been removed, 1s of the form

j‘ d ¥

v _ (4.1)
A I + 1wt | F sinyx -
. (vé x-1)
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For large WT , there 1s a relation that enables us to replace the

integrand by

P i

lrnn

Ve - L Ve of

JF - - — YEgihy X =1
Wi oo Vg siny X l wT Vs

(A.2)

where F’stands for the principal part of the function. Therefore when
wWT>> l, the approximation made 1n treating the denominator of the
integrals appearing in (II.2) as rapidly varying 1s more readily Justl-
fiable for the real part of the integral (A.l) than it is for the
imaginary part. For a better approximation with w7 not too large, we
can evaluate the rapldly varying integral (A.1) directly. The real and
imaginary parts of (A.l) are the functions G and H defined in (II.4).
The functions & and H are gilven for various values of w<TL and Y in

Table IIT.

It may also be noted that the approximations made in deriving (II.3)

i
= + 7 5‘(_.‘ sinyy-l.
Vs :

[T P R VY
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are least valid where the Bessel function Ug (Xcesysih 6) has its
zeroes. To evaluate the approximatlons made, in thils region, we expand

J,a (X Cosysin O ) around the angle 5‘

J.aa C X cosy s.'ne): \I,a(xc-'is\)s‘i'he“) + XcogV (A.3)

s ' a ’ "
e B-snd* d U (X ecasvsint ) a4l Xac.osau (sn'r\G'S!"\e‘e)q
= (Xc.asvs:'n'é"‘) a

2 2 .
Y d \J: (X cesvsin a~)
~ : a
d L Koosy sin&* )
The square of the Bessel functlon is an even function of sin &

3 , _
so that when Jc { Xeosve:nB™ ) £ O we have

4 .
Klmsay (Sl'he- s[n'ﬁ‘)a J! (stv 5”‘\6*)

(A.4)

< )
JO LXLOSV ;lr\e) = '5:

where we have used the famlllar Bessel function identitie522

! v
I, = J,o ~J, and \T.V = (-l):\; .  Substituting the
expansion (A.3) for J:&LJ.C casy $'n8®) 1in the integral in (II.2) we

get an expansion in terms of the derivatives of «J (K cosvs ind)

evaluated at S* . The coefficient of the nth derivative in thils ex-
ot v\
panslion has been calculated to be of order ( i)’ TV) . Therefore

the condition for the approximations made in deriving (II.3) to be
valld is that cety <« wetr -+ We can rewrite this condition in

terms of the parameters 3l and X,

X ety <« gl (4.5)
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Thls condition arises because for values of)C'vﬂuﬁh.violate this con-
dition the Bessel function 1s not a slowly varying function of 8§ com-
pared to the denomlnator of the integral and the approximation breaks

down. For @T= 10 and V T 0,0 | , the condition for the

validity of the approximation 1s that X < | O 80 that only the filrst

few osclllaticons can be easily interpreted as coming from a given orbit.

We can see from (A.5) that we can increase the value of J{ for which

the approximations made are valild by increasing 1[

Appendix B

In Appendix A we noted that when J; (.X:.asu gl’he‘) has 1ts zeroes,

the approximations used 1lu deriving were not vallid and that we must use
expression (A.3) instead. Introducing {(A.4) into the expression for

in (II.3) we find that

/ furx c —2 -] ~tot A
% Ln*{[’ ¥ '3 5:5 )l .

we + et TIM . c.ijN
C "3 (Wex)® T [l ae (431

Account has been taken of the correction to (II.7) contalned in (B.1),
when the Bessel functlion {J; has 1ts zeroces, ln calculating the relative
attenuatlon shown 1n Flgures 1 and 2. The effect of the correction is
to decrease the peak to valley ratio from what it would be froem (III.4)

and (IV.1l) without considering the correction.

PR

o r .

L ety T (Nw)]
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Figure Captlons

Q
Fig. 1 -- The normalized attenuation 3 (3§, +-L)E | + (wr) J/(ﬁ |)Q

Flg. 2 --
Fig. 3 --
Flg. 4 --

is plotted versus X i Q for the model of a free electron gas.
The angle of tilt in this case 1s V:2g¢.02 and wY s 10
The plot 1s correct for all magnetic flelds when the screening
of the transverse currents breaks down and 1s correct for

i r\) > when screening does nct break down. In the reglon
shown, the osclllations can be attributed to a slngle orbilt.
The normalized attenuation (S, = l)/ ( V°‘ * Von ) (j/)'?

as 2 funetion of X = 3‘9 for a two spherical band model con-

sisting of electrons and holes. The plot 1ls for an angle of ‘

tilt of Ve-8. 33 and wits |8 . The normalized attenuation

9(s, +|)/I ) ( VF“) for the case of mlnority and ma-

Jority carriers when the ratlo -3 =0 follows the same
R

plot for the same values of Yy and wr . The ¢sclllations in
the region shown can be attributed to the orbit drithg in i
phase with the sound wave.

When the magnetlic ficld is tilted at an angle )/ in the di-

rectlon of the sound wave, the orbit glves rise to a maximum

in the attenuation when the component of the orbit diameter

in the direction of propagatlon 1is equal to an integral

number of wavelengths. é
The orbit which dominates the attenuation is shown to drift §

along the magnetic fileld with a velocity VS/VH siny.
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Table I

Values of the functions Nand M for wt = 1, 10 and 100 and angles
of tilt from y = 0.008 to 0.015

Wt = 10 wT = 100
Y N M N M
0.007 -0.221 -0.065 -0.239 -0.007
0.008 -0.331 -0.126 -0.373 -0.014
0.009 -0.484 -0.261 -0.634 ~0.036
0.010 -0.574 -0.610 -1.657 -0.756
0.011 -0.232 -0.928 ~-0.395 -1.367
0.012 -0.062 -0.999 -0.011 -1.276
0.013 +C.13 -0.994 0.205 -1.186
0.0L4 0.268 ~0.957 0.349 -1.105
0.015 0.373 -0.912 0.453 -1.034
Wt =1
v N M
0.007 0.017 -0.073
0.008 0.018 -0.104
0.009 0.028 -0.128
0.010 0.043 -0.153
0.011 0.060 -0.178
0.012 0.078 -0.263
0.013 0.105 ~0.220
0.014 0.129 -0.243
0.015 0.151 -0.257
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Tabie 1I

Magnitude of dcosp = Xs.'n G*Q.,svat Extrema of S,,

Maxima Minima
0 (1.29)* 2.41
3.84 5.52
7.02 | 8.65

*For the free electron case, the first maxima occurs at thls value;
all the other extrema occur at the same values of decosSy

for the various models considered.
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Table III

Values of the function @ and H for w<I = 1, 10, and 100 and
angles of tilt from ¥ = 0.007 to 0.015.

wz =1 wT =10 WT = 100

v G H G H G

.0Q7 105.7 90.9 37.1 240.5 3.92
.008 108.7 87.9 51.2 261 5.55
.009 110 84.3 81.1 288.8 10.49
.010 111 80.5 152 299.6 156.6
.011 111.8 76.3 210 o454 276.1
.012 112.5 71.9 219 190.6 257.3
.013 111.5 67.4 214 152.7 238.8
.01% 111.4 62.8 204 125.9 222.3
.015 110 58.6 153 106 207.8
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